The Evolution of Climate Sensitivity and Climate Feedbacks in the Community Atmosphere Model
نویسندگان
چکیده
The major evolution of the National Center for Atmospheric Research Community Atmosphere Model (CAM) is used to diagnose climate feedbacks, understand how climate feedbacks change with different physical parameterizations, and identify the processes and regions that determine climate sensitivity. In the evolution of CAM from version 4 to version 5, the water vapor, temperature, surface albedo, and lapse rate feedbacks are remarkably stable across changes to the physical parameterization suite. However, the climate sensitivity increases from 3.2 K in CAM4 to 4.0 K in CAM5. The difference is mostly due to (i) more positive cloud feedbacks and (ii) higher CO2 radiative forcing in CAM5. The intermodel differences in cloud feedbacks are largest in the tropical trade cumulus regime and in the midlatitude storm tracks. The subtropical stratocumulus regions do not contribute strongly to climate feedbacks owing to their small area coverage. A ‘‘modified Cess’’ configuration for atmosphere-only model experiments is shown to reproduce slab ocean model results. Several parameterizations contribute to changes in tropical cloud feedbacks between CAM4 and CAM5, but the new shallow convection scheme causes the largest midlatitude feedback differences and the largest change in climate sensitivity. Simulations with greater cloud forcing in the mean state have lower climate sensitivity. This work provides a methodology for further analysis of climate sensitivity across models and a framework for targeted comparisons with observations that can help constrain climate sensitivity to radiative forcing.
منابع مشابه
Stratospheric ozone chemistry feedbacks are not critical for the determination of climate sensitivity in CESM1(WACCM)
The Community Earth System Model-Whole Atmosphere Community Climate Model (CESM1-WACCM) is used to assess the importance of including chemistry feedbacks in determining the equilibrium climate sensitivity (ECS). Two 4×CO2 model experiments were conducted: one with interactive chemistry and one with chemical constituents other than CO2 held fixed at their preindustrial values. The ECS determined...
متن کاملSpatial Decomposition of Climate Feedbacks in the Community
4 An ensemble of simulations from different versions of the Community Atmosphere Model 5 (CAM) in the Community Earth System Model (CESM) is used to investigate the processes 6 responsible for the inter-model spread in climate sensitivity. In the CESM simulations, 7 the climate sensitivity spread is primarily explained by shortwave cloud feedbacks on the 8 equator-ward flank of the mid-latitude...
متن کاملCan climate sensitivity be estimated from short-term relationships of top-of-atmosphere net radiation and surface temperature?
Increasing the knowledge in climate radiative feedbacks is critical for current climate studies. This work focuses on short-term relationships between global mean surface temperature and top-of-atmosphere (TOA) net radiation. The relationships may be used to characterize the climate feedback as suggested by some recent studies. As those recent studies, an energy balance model with ocean mixed l...
متن کاملThe Dependence of Radiative Forcing and Feedback on Evolving Patterns of Surface Temperature Change in Climate Models
Experiments with CO2 instantaneously quadrupled and then held constant are used to show that the relationship between the global-mean net heat input to the climate system and the global-mean surface air temperature change is nonlinear in phase 5 of theCoupledModel Intercomparison Project (CMIP5) atmosphere– ocean general circulation models (AOGCMs). The nonlinearity is shown to arise from a cha...
متن کاملClimate Feedbacks in CCSM3 under Changing CO2 Forcing. Part I: Adapting the Linear Radiative Kernel Technique to Feedback Calculations for a Broad Range of Forcings
Climate feedbacks vary strongly among climate models and continue to represent a major source of uncertainty in estimates of the response of climate to anthropogenic forcings. One method to evaluate feedbacks in global climate models is the radiative kernel technique, which is well suited for model intercomparison studies because of its computational efficiency. However, the usefulness of this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012